

IRRP Modeling Inputs and Assumptions

Cost & Performance of Existing and Future Plants

IRRP PROJECT -- NOT FOR DISTRIBUTION

IRRP PROJECT -- NOT FOR DISTRIBUTION

1a

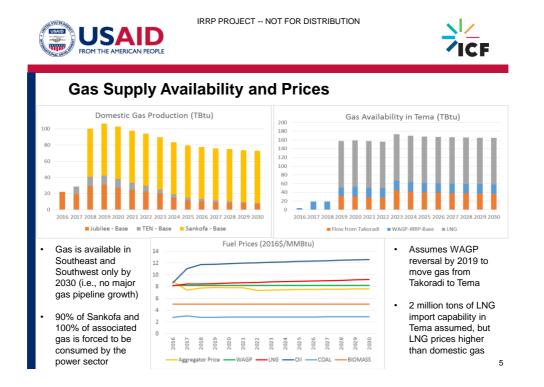
Dispatch Decisions for Power Plants

- IPM dispatches units based on variable cost (FOM+VOM+Fuel costs), which is the short-run marginal cost for a power plant
- Such a SRMC approach is consistent with competitive wholesale electricity market (WEM)
- Current dispatch decisions do not conform to this approach, as it relies on regulated tariffs (which includes additional costs associated with capital recovery)
 - Hence the needs for additional fixed cost adders to approximate current dispatch decisions (at least for the short term)
- Ghana is expected to move towards a competitive WEM shortly, and IPM modeling results could help evaluate the implications for changing dispatch for cost-recovery and negotiations for bilateral contracts in a WEM
 - IRRP will work with GRIDCo to understand how upcoming market rules will impact modeling (and how IPM can be used for evaluating the draft rules)

Existing & UC Plants	Fixed O&M	Var. O&M	Heat Rate	Variable	Est. Regulated Tariff	Estimated Capital Cost
				Marginal Cost		Adder to MCs
	2016\$/kW-yr	2016\$/MWh	Btu/kWh	Uscents/kWh	Uscents/kWh	Uscents/kWh
Akosombo	9.16	0.98	-	0.28	2.02	85.13
Kpong	9.16	0.98		0.25	4.14	242.24
TAPCO (T1)	18.70 30.94	5.00 4.90	8,483	7.01	10.77	279.91
TICO (T2) MRP	30.94	4.90	8,400	7.10 9.83	11.00	290.10
MKP TT1PP	12.38	4.50	12,468	9.83	13.00	222.38
TT2PP	14.30	4.50	11,180 12,468	9.09	11.68 11.68	192.72
			1			
SAPP 1	11.83	4.50 166.90	7,800	7.02	15.30	616.49
VRA Solar	- 27.74		-	16.69 1.34	20.18	51.97
Bui CENIT	27.74	1.63 4.50		1.34	10.47 15.82	216.04
	34.00	4.50	11,180 8,440	12.86	15.82	220.24
Trojan 1 KTPP	12.30	3.50	10.800	9.39	12.00	194.13
KarpowerShip 1	177.83	3.50	8.514	9.39	12.00	247.76
BXC Solar	- 177.03	201.80	8,514	20.18	20.18	247.70
	14.54	201.80	8.800	20.18	20.18	432.64
Ameri_2016	14.54	5.00	-,	7.19	13.00	432.64
Trojan 2B			8,440	12.29		
Trojan 2A GP Chirano Plant	34.00 17.50	5.50 3.50	8,440 11.000	12.29	21.90 15.00	673.18
Safisana	35.00	4.20	13.500	14.89	16.00	1.44
GP Tarkwa Plant	17.50	4.20	9,926	13.49	15.00	1.44
GP Darmang Plant	17.50	3.50	10.630	14.40	15.00	44.38
SAPP 2	17.50	3.50	7,800	6.98	14.25	44.30 541.59
AKSA	16.00	3.50	8,500	8.38	14.23	269.81
Trojan 3	34.00	5.50	8,500	7.66	12.00	269.8
KarpowerShip 2	177.83	3.50	8,100	10.56	13.89	247.76
Cenpower	16.00	3.50	7,830	7.00	14.00	521.14
Amandi	30.94	4.90	8,200	6.96	12.00	375.55
Early Power	16.00	3.50	7,500	10.31	15.00	348.85

SΔ

IRRP PROJECT -- NOT FOR DISTRIBUTION

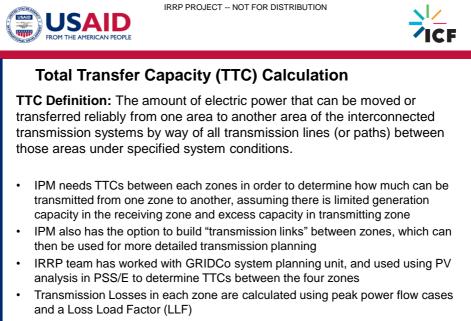


4

		Potentia	al Builds		Fuel cost	Generation Cost
Сар Туре	Capital Cost	Fixed O&M	Var. O&M	Heat Rate	\$/MMBtu	Uscents/kWh
	2016\$/kW	2016\$/kW- yr	2016\$/MW h	Btu/kWh	\$/ININIDIC	USCENIS/RWII
Biogas	4200	410.3	5.5	18,000	3.00	17.55
Biomass	3700	110.3	4.5	18,000	5.00	16.30
Combined Cycle	1300	15.0	3.5	7,250	7.66	7.87
Combustion Turbine	1100	11.5	4.2	10,000	9.99	12.06
Hydro Small	5000	45.0	3.9	0		13.75
Solar PV - 2018	1295	24.8	0.0	0		11.06
Solar PV - 2020	1108	24.8	0.0	0		9.70
Solar PV - 2026	1002	24.8	0.0	0		8.93
Wind Turbine	3100	46.7	0.0	0		15.02
Coal Steam Turbine	5000	65.0	6.0	8,800	2.82	11.21
Nuclear	7000	100.0	2.3	12,000	0.28	12.49

 Information based on IRRP assumptions, based on review of US EIA modeling assumptions in 2016

- · Coal and Nuclear costs include estimated fuel infrastructure costs
- VOM and FOM are based on recent US EIA modeling assumptions, with some modifications
- Solar PV capital costs show a declining trend and is based on average costs of the recent 50 MW Bui Solar PV tender process in 2016



IRRP Modeling Inputs and Assumptions

Transmission Limits

IRRP PROJECT -- NOT FOR DISTRIBUTION

6a

IRRP is continuing to review and finalize the TTC numbers, with GRIDCo support

IRRP PROJECT -- NOT FOR DISTRIBUTION

Transmission Constraints (MW): 2016 to 2018

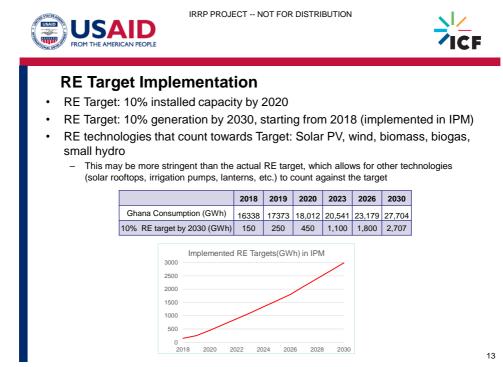
Source	Destination	Non-Firm TTC	Firm TTC	Contingency
			450	161 kV Mallam - Winneba
South West	South East	476	454	161 kV Mallam – Cape Coast
			292	330 kV Volta - Aboadze
			373	161 kV Mallam - Winneba
South East	South West	403	392	161 kV Mallam – Cape Coast
			120	330 kV Volta - Aboadze
South West	Ashanti	370	0 (NC)	161 kV Dunkwa – New Obuasi
oouur moor	/ tonanti	0.0	331	161 kV Prestea - Obuasi
South West	North	60	0	161 kV Juabeso - Mim
			178	161 kV Nkawkaw - Konongo
South East	Ashanti	207	170	161 kV Nkawkaw – K2BSP
			193	161 kV Akwatia – New Obuasi
Ashanti	North	61	9	
North	Ashanti	68	13	

		IRRP PROJECT	NOT FOR DISTR	
		•	,	to 2030 (w/ Gen Limi
Source	Destination	Non-Firm TTC	Firm TTC	Contingency
South West	South East	004	589	161 kV Mallam - Winneba
South west	South East	601	200	330 kV Volta - Aboadze
			350	161 kV Mallam - Winneba
South East	South West	357	80	330 kV Volta - Aboadze
South West	Ashanti	630	603	161 kV Dunkwa – New Obuasi
			609	161 kV Prestea - Obuasi
South West	North	30	0	161 kV Juabeso - Mim
			193	161 kV Akwatia – New Obuasi
South East	Ashanti	227	201	161 kV Nkawkaw - Konongo
			194	161 kV Nkawkaw - Anwomaso
			295	161 kV Kumasi - Techiman
Ashanti	North	297	219	330 kV Anwomaso- Kintampo
			294	161 kV Kumasi - Kenyase
			292	161 kV Obuasi - Kenyase
North	Ashanti	0	0	· · · · · · · · · · · · · · · · · · ·

IRRP PROJECT -- NOT FOR DISTRIBUTION

ion Cons	straints (M	W): 2019	9 to 2030 (w/o Gen Limits)	
Destination	Non-Firm TTC	Firm TTC	Contingency	
		715	161 kV Mallam - Winneba	
South East	786	0	330 kV Volta - Aboadze	
		641	161 kV Mallam – Cape Coast	
		569	161 kV Mallam - Winneba	
South West	666	263	330 kV Volta - Aboadze	
		601	161 kV Mallam – Cape Coast	
Ashanti	700	698	161 kV Dunkwa – New Obuasi	
Ashanti	Ashanti	700	718	161 kV Prestea - Obuasi
		0	330 kV Dunkwa - Anwomaso	
North	30	0	161 kV Juabeso - Mim	
		199	161 kV Akwatia – New Obuasi	
Ashanti	243	207	161 kV Nkawkaw - Konongo	
		198	161 kV Nkawkaw - Anwomaso	
		413	161 kV Kumasi - Techiman	
North	478	152	330 kV Anwomaso- Kintampo	
		233	161 kV Kumasi - Kenyase	
		392	161 kV Obuasi - Kenyase	
Ashanti	198	60		
	Destination South East South West Ashanti North Ashanti North	DestinationNon-Firm TTCSouth East786South West666Ashanti768North30Ashanti243North478	South East 786 715 South East 786 0 641 569 263 South West 666 263 Ashanti 768 698 Ashanti 768 718 0 0 0 North 30 0 Ashanti 243 207 198 413 152 North 478 233 392 392 392	

		ECT NOT FOR DISTF	RIBUTION	
Annu	al Energy Loss Re	esults (<u>Initi</u>	al Estimate	<u>es</u>)
		2016-2018	2019 +	
	Zone	%Losses	%Losses	
	South East	3.44	1.60	
	South West	0.95	1.15	
	Ashanti	0.61	0.29	
	North	0.49	0.15	

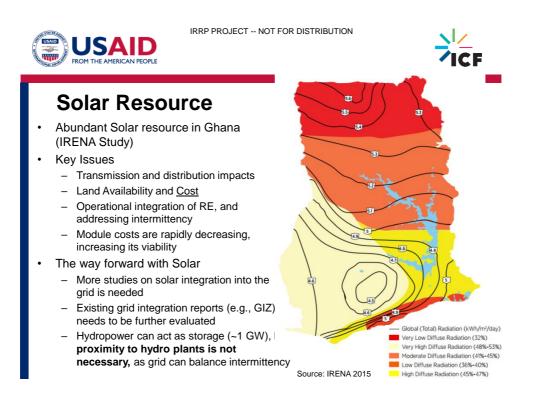

11

IRRP Modeling Inputs and Assumptions

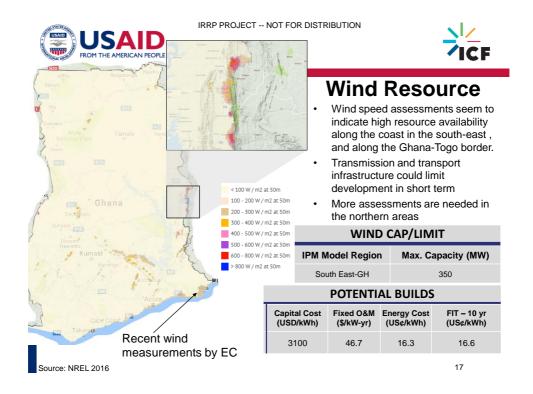
Renewable Energy Target & Resources

IRRP PROJECT -- NOT FOR DISTRIBUTION

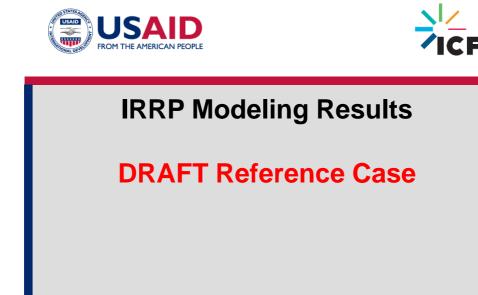
12a



Renewable Feed in Tariff from PURC (October 2016)


TPYE OF TECHNOLOGY	October 2016-	10 Year Tariff	October 2016-Indicative Tariff with 20yr fix term		
	GHp/kWh	US ¢/kWh	GHp/kWh	US ¢/kWh	
Wind	65.3529	16.5551	57.0898	14.4538	
Solar PV	59.7750	15.1421	51.3385	12.9977	
Hydro <= 10MW	52.9428	13.4114	45.5979	11.5444	
Hydro (<= 10MW and <= 100MW)	56.5312	14.3204	48.6881	12.3267	
Tidal Wave (Ocean Wave)	52.9428	13.4114	45.5879	11.5418	
Run-of-River	52.9428	13.4114	45.5879	11.5418	
Biomass	69.1225	17.5100	59.5326	15.0723	
Biomass (Enhanced Technology)	72.8589	18.4565	62.7507	15.8871	
Biomass (Plantation as Feed Stock)	78.1092	19.7865	67.2726	17.0319	
Landfill Gas	69.1225	17.5100	59.5326	15.0723	
Sewage Gas	69.1225	17.5100	59.5326	15.0723	
Geoplutonic (Geothermal)	46.5817	11.8000	40.1191	10.1572	

Solar	PV Cha	aracteristi	cs in IPM	Model	
• Cos	t Input fo	· IPM		 Other In 	puts
	EXIST	NG BUILDS		SOLAR	CAP/LIMIT
Plant Na	ime	Variable O& (2016 US¢		IPM Model Regions	Max. Capacity (MW)
BXC		20.77			
VRA So	lar	~17		Ashanti GH	140
Solar capa	acity factors a	t 17%, based on I	BXC profile	North GH	400
	POTEN	TIAL BUILDS		South West-GH	280
	Capital Cos	Fixed O&M		South East-GH	290
Plant Name	(2016 USD/kWh)	(2016 USD/kW- yr)	Energy Cost (2016 US¢/kWh)	IRRP Assumptions: Several 20-50 MW size	e plants can be build in the
MoP (20MW)	-	-	~11.7	short term, and larger s over time.	sizes can be incorporated
IRRP Solar 2018	1420	24.8	11.1	Transmission improver	nents can further increase
IRRP Solar 2020	1,300	24.8	9.7	size of solar plants (mo	
IRRP Solar 2026	1,110	24.8	8.9	Information from other support our analysis	studies (GIZ) can help 16

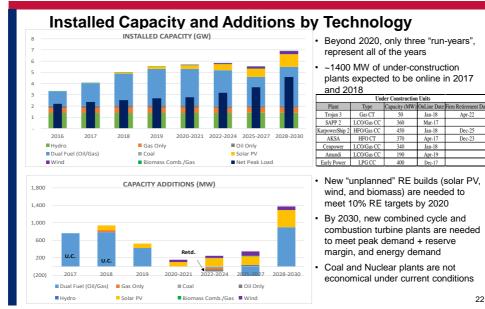

S	Small H	lydrop	ower F	Resol	irce
Name	Capacity (MW)	Year of Study	Installed Cost [2016 USD/kW]	Energy Cost [2016 US ¢/kWh]	studies are outdated, and needs to be updated (10
Pwalugu	70	2014	5971	30.1	ongoing studies led by
Hemang	60	2012	4975	26.3	MoEn)
Juale	87	1992	3982	11.9	Impact of Climate Change
Daboya	43	1992	5300	17.8	has not been considered
Kulpawn	36	1992	9117	29.7	· Costs are very sensitive to
Koulbi	68	1984	5769	15.3	environmental and social
Ntereso	64	1984	4248	16.1	impacts; 15% additional
Jambito	55	1984	4557	21.1	costs have been added to
Lanka	95	1984	5208	23.4	account for E/S impacts in
Jomoro	20	1984	6597	23.4	IRRP calculations
Asuaso	25	1984	5748	16.9	 High costs imply that
Sodukrom	17	1984	9337	35.5	additional incentives might
Kojokrom	30	1984	4740	15.9	be necessary to promote
Tanoso	56	1984	3273	11	small hydro – but better
Abatumesu	50	1984	4797	15.7	hydrological and feasibility
Awiasam	50	1984	3305	12.4	studies are needed

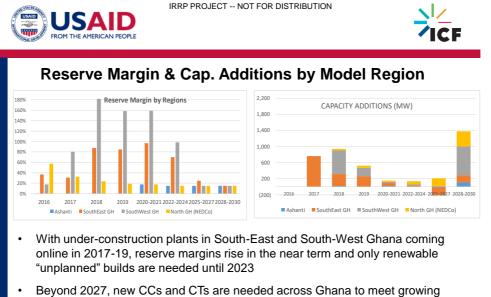
		IRRP PROJE	CT NOT FOR DISTRIBL	JTION	
S	Small	Hydrop	ower Res	ou	rce
	CAPACI	TY LIMIT in IP	М	•	Costs are very
IPM Model	Regions	Max. Ca	apacity (MW)		dependent on specifics
North GH (Pwa	lugu, Juale)		157	•	FIT for small hydro may
South West-GH	(Hemang +)		140		need to be reviewed
				•	IRRP will assess climate change impacts in future
1	POTENTIA	BUILD COST	in IPM		
Capital Cost (2006\$/kW)	Fixed O&M (\$/kW-yr)	Cost of Energy (US¢/kWh)	FIT – 10 yr (US¢/kWh)		
5000	45	14.3	14.32		
Capital Cost	based on	average of Bu	i and Hemang cos	sts in	pre-feasibility studies

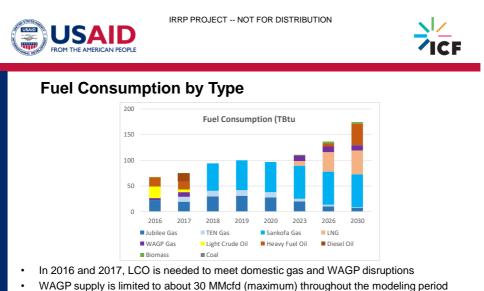
19

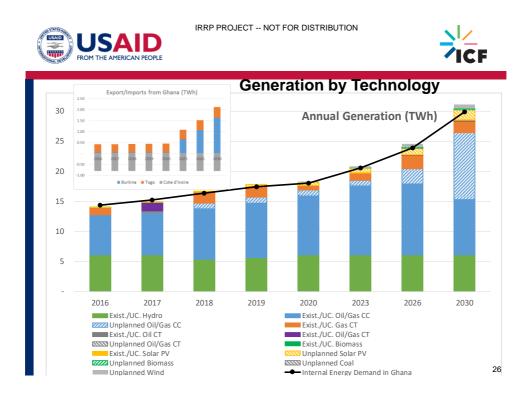
	USAI M THE AMERICAN	D	RP PROJECT N	OT FOR DISTF	RIBUTION		
	Biog	gas			Bio	omass	
C	CAPACITY	LIMITS in IP	м		CAPACITY	LIMITS in	IPM
IPM M Regi		Max. Capad	ity (MW)		Model gions	Max. Cap	acity (MW)
Ashant	ti-GH	5		Asha	inti-GH		50
North	-GH	20		Nor	th-GH	1	00
South W	est-GH	10		South \	West-GH	2	200
South Ea	ast-GH	10		South	East-GH	2	200
P	OTENTIAL	BUILDS in II	РМ	P	OTENTIAL	BUILDS in	IPM
Capital Cost (US\$/kW)		VOM (US¢/kWh-yr)	Cost of Energy (US¢/kWh)	Capital Cost (US\$/kW)	Fixed O&M (US\$/kW-yr)	VOM (US\$/kWh-yr)	Cost of Energy (US¢/kWh)
4200	410	5.5	17.55	3700	110.3	4.5	16.4

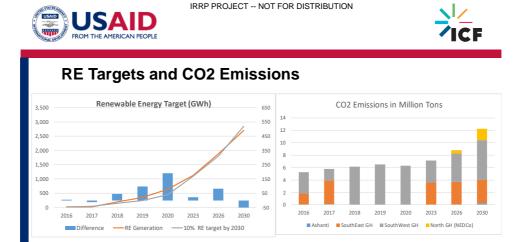
20




21a


IRRP PROJECT -- NOT FOR DISTRIBUTION




- demand and maintain RM
- Currently, sufficient gas (domestic gas, WAGP, and LNG) and oil supply are assumed, and additional scenarios with limited fuel supply are being evaluated

- Sankofa 90% take or pay is fully enforced, and all of the associated gas production is also forced to be consumed
- By 2030, additional consumption from LNG and HFO to compensate for decreasing domestic gas supply and limited WAGP (Model currently does not allow for gas to Ashanti or North Ghana)

400 350 300	Gas Cor	nsumption (MN	/Btu/day)	400 350 300		Gas Cor	sumption (MM	//Btu/d)	_
250					250					
150					150					
50					100 50					
0					0					
Jubi	ilee Gas 🛛 🗖 TEN Gas	Sankofa Gas	LNG	WAGP Gas		Jubilee Gas	TEN Gas	Sankofa Gas	LNG	WAGP G

- · RE targets are met with increased solar and wind builds
- RE Targets limit rise in CO2 emissions, as the near-term new builds are all renewable
- CO2 emissions from the power sector rise from about 4.9 million tons of CO2 in 2016 to about 12 million tons in 2030.
- The rise in CO2 emissions is primarily due to greater consumption of oil and gas beyond 2020 to meet rising demand

Marginal Capacity and Energy Prices

Capacity	Region Group	2016	2017	2018	2019	2020	2023	2026	2030
Prices	Ashanti Group	0.00	0.00	0.00	0.00	0.00	0.00	0.00	49.26
\$/kW	Northern Ghana	0.00	0.00	0.00	0.00	0.00	0.00	100.33	49.96
Φ/Κνν	SouthEast Ghan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.28
	SouthWest Gha	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.12

	Region Group	2016	2017	2018	2019	2020	2023	2026	2030
	Ashanti Group	83.05	89.04	0.5	3 0.63	3 0.98	67.75	93.35	100.64
Prices	Northern Ghana	83.05	89.04	0.5	0.63	3 0.98	67.75	93.35	100.64
/MWh	SouthEast Ghan	83.05	89.04	0.5	3 0.63	3 0.98	67.75	93.35	100.64
	SouthWest Gha	83.05	89.04	0.5	3 0.63	3 0.98	67.75	93.35	100.64

 Capacity prices from 2026+ indicate the need for new power plants to meet growing peak load (+ RM) and energy demand.

RE builds and gas generation from 2018+ do not count for energy or capacity prices, as they
are required to meet RE targets and Sankofa take or pay (constraints mean no marginal
cost to the system)

Forced single price for all of Ghana. but zonal prices can also be easily created

Detailed Plant-level Dispatch, Cost, and Pro-forma

								Available								Capacity				
ţ,		Model Region	 Fuel Type 				2018 *													2030
1	CENIT	SouthEast Ghana Group	Oil	Oil Combustion	100	100	100	100	100	100	100	100	0%	0%		0%	0%	0%	0%	
2	Trojan 2B	SouthEast Ghana Group	Oil	Oil Combustion	16	16	16		16				0%	0%		0%	0%			
3	Trojan 2A	Ashanti Group	Oil	Oil Combustion	16	16	16		16				0%	0%		0%	0%			
4	GP Tarkwa Plant	SouthWest Ghana Group	Oil	Oil Combustion	33	33	33		33	33	33	33	0%	0%	0%	0%	0%	0%	0%	
5	GP Chirano Plant	SouthWest Ghana Group	Oil	Oil Combustion	30	30	30		30	30	30	30	0%	0%	0%	0%	0%	0%	0%	
6	GP Darmang Plant	SouthWest Ghana Group	Oil	Oil Combustion	20	20	20		20	20	20	20	0%	0%	0%	0%	0%	0%	0%	
7	SAPP 2	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combined Cycle		370	370		370	370	370	370		55%	0%	0%	0%	93%	93%	
8	8 Cenpower	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combined Cycle			340	340	340	340	340	340			0%	0%	0%	9%	93%	
9	KarpowerShip 1	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combined Cycle	247	247							95%	29%						
10	AKSA	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combined Cycle		250	375		375	375				39%	0%	0%	0%	0%		1
11	TAPCO (T1)	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combined Cycle	305	305	305	305	305	305	305		32%	35%	83%	83%	75%	0%	55%	
12	2 TICO (T2)	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combined Cycle	320	320	320	320	320	320	320	320	87%	88%	88%	88%	88%	77%	88%	
13	Amandi	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combined Cycle				190	190	190	190	190				41%	27%	88%	88%	i :
14	KarpowerShip 2	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combined Cycle			450	450	450	450					95%	95%	95%	95%		1
15	5 TT1PP	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion	100	100	100	100	100	100	100	100	0%	0%	0%	0%	0%	0%	0%	
16	6 KTPP	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion	200	200	200	200	200	200	200	200	0%	0%	0%	0%	0%	0%	0%	
17	7 Trojan 1	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion	25	25	25		25				0%	0%	0%	0%	0%			1
18	Early Power	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion		144	144	378	378	378	378	378		0%	0%	0%	0%	0%	0%	
19	MRP	SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion	70	70	70	70	70	70	70	70	0%	0%	0%	0%	0%	0%	0%	1
20) Safisana	SouthEast Ghana Group	Biomass	Biomass Combustion/Bi	0	0	C	0	0	0	0	0	26%	85%	0%	0%	0%	85%	85%	
21	TT2PP	SouthEast Ghana Group	Gas	Gas Combustion Turbine	45	45	45	45	45	45	45	45	0%	0%	0%	0%	0%	0%	0%	í.
22	SAPP 1	SouthEast Ghana Group	Gas	Gas Combustion Turbine	180	180	180	180	180	180	180	180	32%	3%	0%	0%	0%	0%	91%	
23	Trojan 3	SouthEast Ghana Group	Gas	Gas Combustion Turbine			50	50	50						0%	0%	0%			
24	Ameri_2016	SouthWest Ghana Group	Gas	Gas Combustion Turbine	230	230	230	230	230				0%	0%	90%	90%	90%			1
25	Ameri_2021	SouthWest Ghana Group	Gas	Gas Combustion Turbine	2					230	230	230						0%	8%	
26	5 Bui	Northern Ghana Group	Water	Hydro	330	330	330	330	330	330	330	330	27%	27%	0%	1%	0%	27%	27%	
27	Akosombo	SouthEast Ghana Group	Water	Hydro	900	900	900	900	900	900	900	900	56%	56%	48%	47%	51%	56%	56%	5
28	Kpong	SouthEast Ghana Group	Water	Hydro	140	140	140	140	140	140	140	140	71%	71%	2%	10%	28%	71%	71%	5
29	Cote d'Ivoire Dummy	Cote d'Ivoire	Water	Hydro	150	150	150	150	150	150	150	150	62%	62%	1%	1%	1%	62%	62%	5
30	Burkina Dummy	Burkina Group	Water	Hydro	10	10	10	10	10	110	110	110	1%	0%	1%	1%	1%	0%	0%	
31	VRA Solar	Northern Ghana Group	Sun	Solar PV	2	2	2	2	2	2	2	2	17%	17%	17%	17%	17%	17%	17%	
32	BXC Solar	SouthEast Ghana Group	Sun	Solar PV	18	18	18	18	18	18	18	18	15%	15%	15%	15%	15%	15%	15%	5
33	ASHA COMBINED CYCLE	Ashanti Group	Oil/Gas	Oil/Gas Combined Cycle								48								ĺ
35	NORT COMBINED CYCLE	Northern Ghana Group	Oil/Gas	Oil/Gas Combined Cycle							101	335							95%	5
37	SOUT COMBINED CYCLE	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combined Cycle			115	115	115	115	115	699			95%	95%	95%	95%	95%	5
38	SOUT COMBUSTION TURE	I SouthEast Ghana Group	Oil/Gas	Oil/Gas Combustion								50								1
39	SOUT COMBUSTION TURE	SouthWest Ghana Group	Oil/Gas	Oil/Gas Combustion								432								
40	ASHA SOLAR PV	Ashanti Group	Sun	Solar PV			20	20	20	20	20	20			19%	19%	19%	19%	19%	5
41	ASHA SOLAR PV	Ashanti Group	Sun	Solar PV					20	40	40	40					19%	19%	19%	2
47	ASHA SOLAR PV	Ashanti Group	Sun	Solar PV				1			20	80							19%	- 4

IRRP PROJECT -- NOT FOR DISTRIBUTION

Illustrative Pro-forma (for existing VRA units)

 Spacification
 2010

 Capacity (MW)
 (eneration (CW))
 (enartion (CW))
 (enartion (CW))</

														2029 (real2016\$)	2030
	2081.80	2081.80	2081.80	2081.80	2081.80	2081.80	(real20165) 2081.80	(real20165) 2081.80		(real20165) 2081.80	(real20165) 2081.80			(real20165) 1776.80	1776.80
	2081.80	2081.80	2081.80	2081.80	2081.80	2081.80	2081.80	2081.80		2081.80				1775.00	1775.00
	8600.31	8717.44	9977.83	7666.52	6912.18	6912.18	7708.06	7708.06		9752.66				7264.41	7264.41
	8600.31	8717.44	9977.83	7666.52	6912.18	6912.18	7708.06	7708.06		9752.66				7264.41	7264.41
	47.16	47.80	54.71	42.04	37.90	37.90	42.27	42.27		53.48				46.67	46.67
	1922.78	1876.58	2574.17	1295.49	882.07	882.07	1318.25	1318.25		2451.44	2451.44		1075.45	1075.45	1075.45
	12.66	14.72	20.19	10.16	6.92	6.92	10.34	10.34		19.23			8.43	8.43	8.43
	0.94	0.30	0.41	0.21	0.14	0.14	0.21	0.21		0.39				0.17	0.17
	0.00	0.00	0.00	0.00	0.00	0.00	18.05	18.05		212.46				74.89	74.89
	27.77	28.76	39.45	19.86	13.52	13.52	20.20	20.20		37.57				16.48	16.48
		212237.54												125213.95	
	28.93	24.35	30.68	20.26	15.27	15.27	19.34	19.34		28.99			17.24	17.24	17.24
	28.93	24.35	30.68	20.26	15.27	15.27	19.34	19.34	19.34	28.99	28.99	28.99	17.24	17.24	17.24
	8.96	7.38	7.76	7.82	7.81	7.81	7.38	7.38	7.38	7.52	7.52	7.52	7.60	7.60	7.60
	21437.68	22020.94	28322.90	16776.63	13080.37	13080.37	16980.19	16980.19	16980.19	27178.19	27178.19	27178.19	14803.28	14803.28	14803.28
	2.49	2.53	2.84	2.19	1.89	1.89	2.20	2.20		2.79	2.79	2.79	2.04	2.04	2.04
	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	399180.75	308103.48	308103.48	308103.48
	191.75	191.75	191.75	191.75	191.75	191.75	191.75	191.75	191.75	191.75	191.75	191.75	173.40	173.40	173.40
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.30	9.30	9.30	11.25	11.25	11.25
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19296.69	19296.69	19296.69	19973.15	19973.15	19973.15
	83.05	89.05	69.56	70.12	69.98	69.98	67.83	67.83	67.83	95.26	95.26	95.26	101.64	101.64	101.64
	83.05	89.05	69.56	70.12	69.98	69.98	67.83	67.83	67.83	95.26	95.26	95.26	101.64	101.64	101.64
	714245.36	776294.69	694064.87	537579.43	483709.09	483709.09	522825.96	522825.96	522825.96	929086.34	929086.34	929086.34	738371.99	738371.99	738371.99
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
		776294.69		537579.43					522825.96					758345.14	
-01-30	0.00	0.00	0.00	0.00	0.00	0.00	-0.05	-0.05		-0.58	-0.58			-0.20	-0.20
														-288130.32	
	443979.05	542036.21	359613.75	365441.88	365065.45	365065.45	356762.69	356762.69	356762.69	619213.83	619213.83	619213.83	598354.55	598354.55	598354.55
	270266.31	234258.48	334451.12	172137.56	118643.65	118643.65	166063.22	166063.22	166063.22	309871.93	309871.93	309871.93	140017.23	140017.23	140017.23
														448120.71	
		142855.46	-39567.00	-33738.87										310224.43	
		142855.46	-39567.00		-34115.30									310224.43	
		142855.46		-33738.87										310224.43	
		142855.46	-39567.00	-33738.87	-34115.30	-34115.30	-42418.00	-42418.00	-42418.00	239330.35	239330.35	239330.35	310224.43	310224.43	310224.43
	504263.86														

