Ghana's Long Term Energy Development Plans

Joseph Essandoh-Yeddu (PhD)
Energy Commission, Ghana

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

Mandate of the Commission

- The Energy Commission was established by Energy Commission Act 1997 (Act 541) is to among other things:
 - ❖ To serve as the Government's energy policy advisor by making national energy policy recommendations to the Minister for Energy;
 - ❖ To formulate national policies for the development and utilization of indigenous energy resources e.g. renewable energy (solar, wind and biomass);
 - To prepare, review and update periodically indicative national plans to ensure that all reasonable demands for energy are met.
 - To license and regulate the technical operations of service providers in the electricity and natural gas industry;

Indicative Energy Planning means the Big Picture!!

- Indicative National Energy PLAN means:
 - ✓ Projecting/estimating the Total National energy demand should there be no constraints in energy supply; Or.
 - ✓ What is the potential energy demand if all constraints in the economy are removed?
 - Unconstrained demand means bottom-up approach of demand analysis.
 - ✓ Energy Demand by both Formal and Informal sectors (the latter largely escape or under-estimated by the traditional GDP radar)
 - ✓ Potential energy demand is the barometer or bar for sector engineering agencies to work to reach or clear.

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

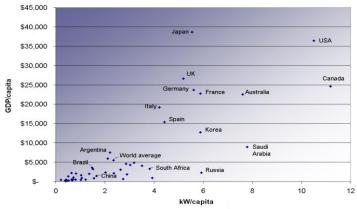
Policy Recommendations to remove the constraints.

ENERGY COMMISSION then through stakeholder consultation make policy recommendations as how best to remove the constraints.

- Projecting/estimating Total National Energy Demand or, Indicative National Energy PLAN means
 - ☐ Projections based upon *sum* of **existing consumption** and **unmet/deficit/suppressed demand**.
- In 2000, the first long-term integrated sustainable energy plan called Strategic National Energy Plan (SNEP) was initiated. SNEP1 (2006-2020) was completed and published in 2006.
- SNEP1 has been updated to SNEPII (2016-2030)

Strategic goes beyond Traditional Planning

- Strategic Planning because:
 - 1) NOT only on *expansion of existing facility* but
 - 2) Fuel and technology diversification as well; multi-way solution as well as Energy Efficiency and Conservation measures.
 - Not necessarily least cost but Optimum cost taking into consideration
 - Technology robustness, socio-economic and environmental issues, Life cycle cost analysis
 - 4) Not only *financial benefits* but job creation, supply security and environmental integrity.
 - 5) Not short but **Long term**; 15 years and beyond.

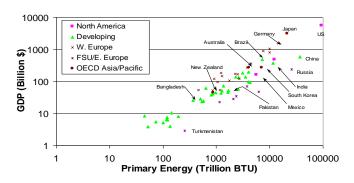

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

5

Forms of Demand projections

- Utility entities GRIDCo, VRA, ECG, etc
 - ➤ Short to medium term; 1-5 years
 - ➤ Operational + business-oriented (actuals/existing/BaU*)
 - > Sector specific
- Energy Commission
 - ➤ Medium to Long term; 5-20 years
 - ➤ Policy based
 - ➤ Indicative; bottom-up
- National Development Planning Commission (NDPC)
 - Long term; 20 years and more
 - Top-down
 - Visionary based

Energy use and Economic Growth Linkages



Higher per capita GDP implies higher electricity use per capita and vice versa

Energy-Economy Nexus

Poor countries have low energy consumption per capita

Energy is simply the ability to do work; poor energy thus translate into poor economy

Overview of the TWO Scenarios for SNEPII: 2016-2030

Scenario Name	Description of scenario	2020	2030
Business-as- Usual (BaU)	Population growth rate follows historical trend	31.0 million *AGR of 2.3%	38.0 million **AGR of 2.17%
nominal	GDP growth rate follows historical trend	US\$ 45.5 billion *AGR of 3.5%	US\$ 126.9 billion **AGR of 7.1%
Accelerated Economic	Population growth rate decreases to 2.09% in 2030	30.8 million *AGR of 2.2%	37.4 million **AGR of 2.09%
Growth (AEG) nominal	Average GDP growth rate of 8.3% to 2030	US\$ 76.20 billion *AGR of 9.0%	US\$ 158.6 billion **AGR of 8.3%

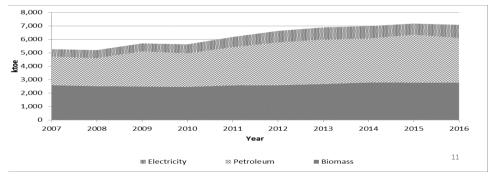
^{*}Average growth rate from 2010 - 2020

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

Energy use indicators

Indicator	2000	2010	2016	Average for Low middle income benchmark
Energy consumption per capita (kTOE)	315	260	250	500
Energy consumption per household (TOE)	1.17	1.45	1.42	1.50
Electricity consumption per capita (kWh)	363	337	403	500
Electricity consumption per household (kWh)	1,375	1,200	1,400	1,500
Biomass consumption per capita (kTOE)	196	102	98	120
Biomass consumption per household (kTOE)	725	600	580	500

Sources: Energy Commission, 2017; IEA, 2016


IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

10

^{**} Average growth rate from 2010 - 2030

Final Energy Consumed (ktoe)

	2007	2008	2009	2010	2011	2012	2013	2014	20151	2016	
	Kilotonnes of Oil Equivalent (ktoe)										
Electricity	539	598	615	674	772	852	908	920	833	982	
Petroleum	2127	2071	2598	2491	2827	3172	3303	3272	3545	3320	
Biomass	2594	2518	2493	2464	2576	2589	2676	2792	2785	2783	
Total	5260	5187	5706	5629	6174	6613	6887	6983	7162	7086	
				Po	ercentage	shares					
Electricity	10.3	11.5	10.8	12.0	12.5	12.9	13.2	13.2	11.6	13.9	
Petroleum	40.4	39.9	45.5	44.3	45.8	48.0	48.0	46.9	49.5	46.9	
Biomass	49.3	48.5	43.7	43.8	41.7	39.1	38.9	40.0	38.9	39.3	

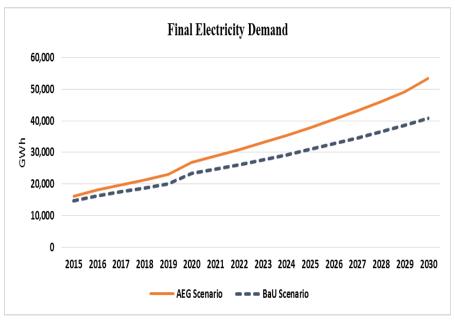
Major drivers for electricity demand

- 1. Achieving a universal electrification by 2020 through the National Electrification Scheme.
- 2. Residential sector demand fuelled by growth in living standards.
- Aluminium production should VALCO be allowed to expands its operation;
- 4. Bauxite to Alumina production
- Increasing Gold production due to the global demand;
- 6. Plans for 'one-district one-factory' throughout the country.
- 7. Growth of the Services sector

SNEP 1 Electricity Demand Projections and Actuals

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghan

13


Why the shortfall?

Shortfall in **actual electricity consumption** compared to the **demand projections** for both scenarios for *the following reasons*:

- i. VALCo was projected to operate 3 potlines but actually operated two potlines in 2006, virtually ZERO from 2007-2010 and operated only ONE potline from 2011-2016. (1860 GWh reduced to 620 GWh)
- ii. Reduction in the country's **lighting load from 2007** due to the **replacement of about 6 million incandescent lighting** bulbs with energy efficient CFL lamps in 2007 (which consequently reduced peak load by about 124 MW = 1,086 GWh).
- **iii. Reduction in refrigeration load from 2012-2016** as a result of increased penetration of efficient refrigerator appliances promoted under an *Efficient Refrigerator Rebate Scheme = 400GWh*)
- iv. Inadequate electricity supplied due to infrastructure constraints, fuel supply challenges and relatively high electricity tariffs.

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

.4

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

15

Resulting Electricity Demand and Shares

Long term Electricity Demand GWh

Sectoral Shares

2016

ercentage Shares

51.222.5

26.2

0.1

0.0

BaU

2030

43.6

32.1

24.1

0.1

0.1

AEG

42.1

33.7

23.9

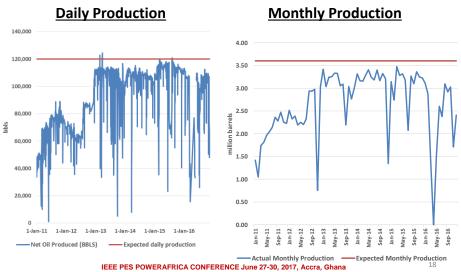
0.1

SECT	SECT SUB- OR SECTORS		2	030	
OR			BaU	AEG	
Hous	Household		16,382	21,138	
	Urban	6,787	14,546	19,034	P
	Rural	943	1,836	2,104	P
Servi	Services		12,076	16,934	Household
Indus	Industry		9,066	11,986	Services
Agric	ulture	3.4	23	36	Sei vices
	Irrigation	1.4	13	24	Industry
	Others	2	10	12	A mui aceltecena
Pipeli	ine				Agriculture
Transpo	Transport		28	91	Pipeline
Total		15,085	37,575	50,184	transport

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

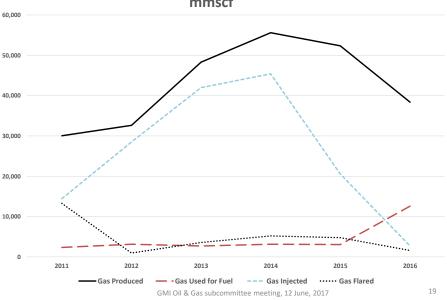
0.2

8

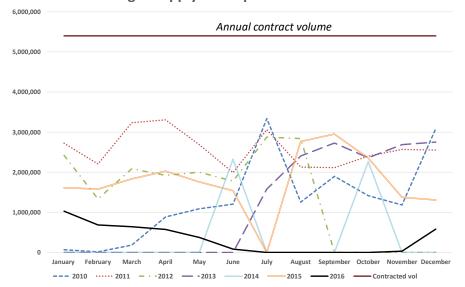

Major Challenges

- Inadequate supply of less expensive fuel
 - eg. Gas, coal, etc.
 - Hydro resource almost exhausted
- High electricity tariff
- Harmonization
 - Covering all scenarios.

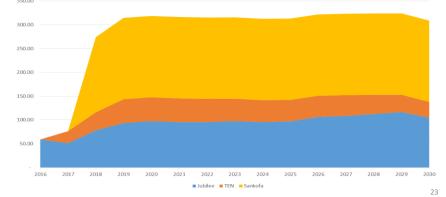
IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana


Jubilee field Oil Production

2011-2016



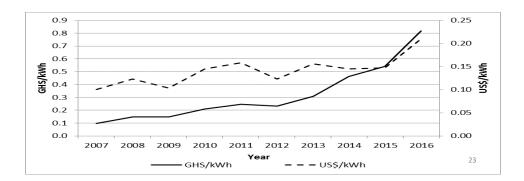
9


WAGP gas Supply inadequate and not reliable

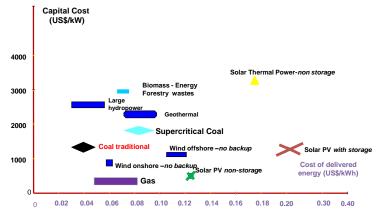
Ghana going to relying more on domestic fields

Gas Production Volumes (mmscf) & Timing

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Jubilee	51	78	94	98	96	96	97	96	97	106	109	113	117	105
TEN	25	38	50	50	50	49	47	46	45	44	44	40	36	33
Sankofa	-	158	171	171	171	171	171	171	171	171	171	171	171	171
Total	76	274	315	318	316	315	316	313	313	322	323	324	324	309


IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

Conclusion


- Electricity demand would increase from about 16–18 TWh in 2016 at an average annual growth rate of 6.5-7.7% to 40-52 TWh in 2030 depending upon the performance of the economy.
- The relatively high electricity tariff would continue to impede industrial growth.
- High tariff creating opportunities for mass deployment of solar power
- Align to cover all the scenarios

Average Electricity End User Tariff very high !!

	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
GHS/kWh	0.097	0.148	0.148	0.211	0.245	0.232	0.307	0.464	0.541	0.817
E character (OUS/USA)	0.07	4.20	4.42	4.45	4.55	4.00	4.07	2 20	2.60	2.00
Exchange Rate (GHS/US\$)	0.97	1.20	1.43	1.45	1.55	1.88	1.97	3.20	3.68	3.89
US\$/kWh	0.100	0.123	0.104	0.145	0.158	0 124	0.156	0 145	0 147	0 210

Projected Average Capital and Delivered Electricity Costs in Sub-Saharan Africa

EXPECTED COST-COMPETITIVE ELECTRICITY SUPPLY

ECONOMIC SECTOR	COMPETITIVE PRICE /TARIFF RANGE	EXPECTED TOLERABLE QUALITY OF POWER
Industry Primary (base metal, etc.) Secondary (toiletries, food, etc.)		Base-load, highly stable (gas, large hydro, coal, etc.)
Agriculture (irrigation) Poultry/livestock	4-6 US cents/kWh 6-9 US cents	Base – intermediate load, fairly stable (some solar and wind inclusive, in case of irrigation)
Commercial/ Services	8-10 US cents/kWh	Intermediate to peak load, fairly stable (highly stable if peak)
Homes/Residential	10-15 cents/kWh	Intermediate load fairly stable Peak load highly stable

Serious Industrial and commercial growth requires relatively cheap, stable baseload sources of power which have largely been coal and natural gas for regions without large hydro and existing nuclear power.

IEEE PES POWERAFRICA CONFERENCE June 27-30, 2017, Accra, Ghana

25

Opportunity for Deployment of Solar PV for the Commerce/Services Sector

The prevailing high Non-residential tariff is encouraging mass deployment of solar electricity

- feed-in tariff of
 - 18.24 US cents per kWh equivalent for systems without back-up storage and
 - 20.14 US cents per kWh equivalent for systems with back-up storage